Topic 6A: Standard Model of Particle Physics

Skill 47 – Relating Particles to the Fundamental Forces (Using the Standard Model Charts)

- 1. ANTI-PARTICLES have the same mass but opposite change to particles.
- 2. The symbol for the up quark is ______

The symbol for the anti-up quark is _____

3. Complete the chart for each of the following particles:

	Particle	Charge	Composition (quarks composition/charge)		
	category				
Proton	baryon (hadron)		uud	93,73,-13	
Neutron	bayon (hadron)	0	udd	9/3, 1/3	
Electron	lepton		_	-le	

4. Fill-in the blanks
Quarks have a partial charge of $\frac{9}{3}$ or $\frac{-1}{3}$ but combine to form
elementary particles such as <u>profors</u> and <u>newbors</u> .
The other common elementary particle is the electron which is a
and NOT made of quarks.
For every particle there exists a corresponding antique which
contains the same mass and structure but opposite electric charge. An anti-
particle is symbolized by a line over the letter for the particle. For example the
symbol for the up quark is so the anti-up quark is symbolized by
<u> </u>
made of \overline{udd} .
Sub atomic particles such as the electron, proton and neutron are the smallest
independent particle that can exist, they are called the elementary particles.
Quarks are not elementary particles because they havepartial (Graction) charge.
Quarks must be combined to form a zero charge or whole number charge.

A proton is composed of "uud" and has a charge of $\underline{\hspace{1cm}}+$ \ ; an antiproton is
composed of $\overline{u}\overline{u}\overline{d}$ with a charge of $\underline{}$. A neutron is composed of
<u>udd</u> with a charge of; an anti-neutron is composed of
with a charge of (A neutron is its own anti-particle).
An elementary particle with a charge of 1e has a charge in coulombs of 1.6×10 ⁻¹⁹ C To convert by elementary charge to coulombs multiply leg 1.6×10 ⁻¹⁹ C
USE THE FLOW CHART ON THE PHYSICS REFERENCE TABLE TO GROUP PARTICLES ACCORDING TO COMPOSITION OF QUARKS AND LEPTONS
5. Classify each of the following particles as a quark, lepton, anti-lepton, baryon, and anti-baryon or meson a. udd baryon b. Electron lepton c. tt energy due d. uud anti-baryon e. s quark f. anti-neutrino anti-lepton g. css baryon h. ud meson 6. Determine the charge on each of the following particles a. ttb %%, 5 = + b. uts %%, 5 = + c. uuu % 4 4 5 = 2 d. u\overline{u} O = 20000000000000000000000000000000000
7. Give two examples of baryons that add up to a charge of +1
uud ++b

Topic 6A: Standard Model of Particle Physics Skill 47

8. Which particles are <i>not</i> affected by the strong	>	mado.	ty of	quartes
force?				

- A) hadrons
- B) protons
- C) neutrons
- D) electrons
- 9. The particles in a nucleus are held together primarily by the
 - A) strong force
 - B) gravitational force
 - C) electrostatic force
 - D) magnetic force

Base your answers to questions 10 and 11 on the table below, which shows data about various subatomic particles.

Subatomic Particle Table

Symbol	Name	Quark Content	Electric Charge	Mass (GeV/c²)
р	proton	uud	+1	0.938
p	antiproton	บบี	-1	0.938
'n	neutron	nqq	0	0.940
	lambda	uds _{i (Nest}	0	1,116
Ω-	omega	SSS	1	1.672

10. All the particles listed on the table are classified as

- A) mesons
- B) hadrons
- C) antimatter
- D) leptons

guark guark

3 quartes

antimatter

no quarks

11. Which particle listed on the table has the opposite charge of, and is more massive than, a proton?

- A) antiproton
- B) neutron
- C) lambda

D) omega

No cas

Topic 6A: Standard Model of Particle Physics

12000	Paris N				
1つ	Dawrong	STATE	horro	ahamaaa	of
14.	Baryons	may	Have	charges	OI

A) +1e and $+\frac{4}{3}e$ C) -1e and +1e

B) +2e and +3e D) -2e and $-\frac{2}{3}$ e

13. What is the total number of quarks in a helium nucleus consisting of 2 protons and 2 neutrons?

A) 16 B) 12 C) 8

4 baryons @ 3 gain = 12 quarks

14. What fundamental force holds quarks together to form particles such as protons and neutrons?

- A) electromagnetic force
- B) gravitational force
- C) strong force
- D) weak force

15. A top quark has an approximate charge of

A) -1.07×10^{-19} C B) -2.40×10^{-19} C

(C) $+1.07 \times 10^{-19}$ C D) $+2.40 \times 10^{-19}$ C

+2/30 × 1,6×10-19C =

16. According to the Standard Model of Particle Physics, a meson is composed of

- A) a quark and a muon neutrino
- (B) a quark and an antiquark
- C) three quarks
- D) a lepton and an antilepton

17. What are the sign and charge, in coulombs, of an antiproton? − \e

- 18. The tau neutrino, the muon neutrino, and the electron neutrino are all
 - (A) leptons
- B) hadrons
- C) baryons
- D) mesons

19. A meson may *not* have a charge of

A) +1e (B) +2e (C) 0e

20. Protons and neutrons are examples of

A) positrons

(B) baryons

C) mesons

D) quarks

21. Compared to the mass and charge of a proton, an antiproton has

- A) the same mass and the same charge
- B) greater mass and the same charge
- C) the same mass and the opposite charge
- D) greater mass and the opposite charge

22. A particle that is composed of two up quarks and one down quark is a

A) meson

B) neutron

(C) proton

D) positron

23. A particle unaffected by an electric field could have a quark composition of

B) bbb C) udc D) uud

24. A baryon may have a charge of

A) -1/3 e

(B) 0 e

C) $+ \frac{2}{3} e$

D) + 4/3 e

25. A particle is known to only contain down and strange quarks, what can be its charge?

A) +2 e B) +1 e C) 0 e D) -1 e

Topic 6A: Standard Model of Particle Physics

- 26. Which of the following is the boson (force carrier) of the electromagnetic force
 - A) photon
- B) graviton
- C) electron
- D) quark

- 27. Which of the following pair interactions will result in annihilation
 - A) a charm quark and anti bottom quark
 - B) a charm quark and top quark
 - (C) a charm quark and anti-charm quark
 - D) a top quark and a bottom quark

corresponding

×