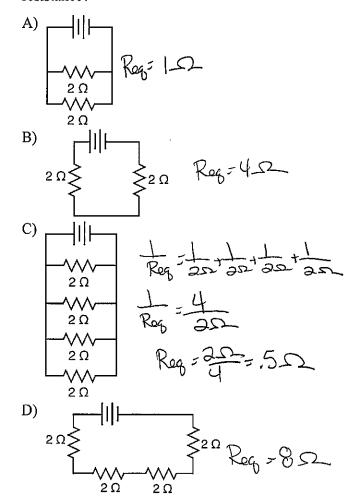

- 175. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity of 1-ohm resistors are available. Which of the following should be done to complete the circuit?
 - (A) Connect four 1-ohm resistors in series.
 - B) Connect four 1-ohm resistors in parallel.
 - C) Connect two of the 1-ohm resistors in series and two in parallel.
 - D) Connect only two 1-ohm resistors in parallel.
- 176. Which circuit segment has an equivalent resistance of 6 ohms?
 - A) _______55

- 177. A 3-ohm resistor and a 6-ohm resistor are connected in parallel across a 9-volt battery. Which statement best compares the potential difference across each resistor?
 - The potential difference across the 6-ohm resistor is the same as the potential difference across the 3-ohm resistor.
 - B) The potential difference across the 6-ohm resistor is twice as great as the potential difference across the 3-ohm resistor.
 - C) The potential difference across the 6-ohm resistor is half as great as the potential difference across the 3-ohm resistor.
 - D) The potential difference across the 6-ohm resistor is four times as great as the potential difference across the 3-ohm resistor.
- 178. In the circuit diagram below, what are the correct readings of voltmeters V_1 and V_2 ?

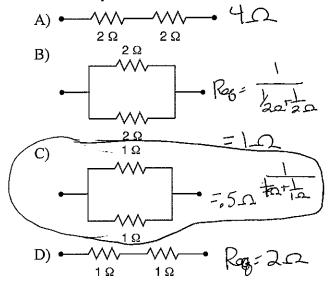
- A) V1 reads 2.0 V and V2 reads 4.0 V
- B) V_1 reads 4.0 V and V_2 reads 2.0 V
- C) V_1 reads 3.0 V and V_2 reads 3.0 V
- D) V_I reads 6.0 V and V₂ reads 6.0 V

179. Base your answer to the following question on the diagram below.

The voltage drop across R_1 is


- A) 6 V
- B) 9 V
- C) 3 V
- (D) 10 V

Same m every brand 180. In the circuit shown at the right, the potential difference across the 4.0-ohm resistor is


- A) 6.0 volts
- B) 2.0 volts
- C) 3.0 volts
- (D) 12 volts

Same in every branch

181. Which circuit has the *smallest* equivalent resistance?

182. Which combination of resistors has the *smallest* equivalent resistance?

183. Three identical lamps are connected in parallel with each other. If the resistance of each lamp is X ohms, what is the equivalent resistance of this parallel combination?

A)
$$X^{\Omega}$$

B) $\frac{X}{3}^{\Omega}$

C) $3X^{\Omega}$

D) $\frac{3}{X}^{\Omega}$

184. Three resistors, 4 ohms, 6 ohms, and 8 ohms, are connected in parallel in an electric circuit. The equivalent resistance of the circuit is

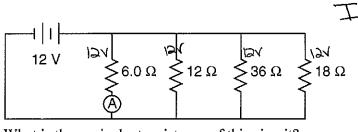
A) less than 4
$$\Omega$$

- B) between 4Ω and 8Ω
- C) between 10 Ω and 18 Ω
- D) 18 Ω

less than the smallest R

185. A circuit consists of a 10.0-ohm resistor, a 15.0-ohm resistor, and a 20.0-ohm resistor connected in parallel across a 9.00-volt battery. What is the equivalent resistance of this circuit?

A)
$$0.200 \Omega$$
B) 1.95Ω
C) 4.62Ω
D) 45.0Ω

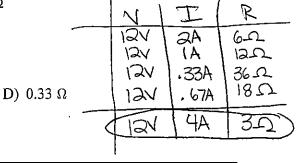

$$\frac{1}{Reg} = \frac{1}{10 \Omega} + \frac{1}{15 \Omega} + \frac{1}{20 \Omega}$$

$$\frac{1}{Reg} = \frac{6}{60 \Omega} + \frac{44}{60 \Omega} + \frac{3}{60 \Omega} = \frac{13}{60 \Omega}$$

$$Reg = 4.62 \Omega$$

Rmust be lower than the lowest R but not tiny

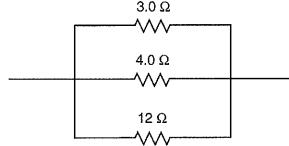
186. Base your answer to the following question on the diagram below, which represents an electric circuit consisting of four resistors and a 12-volt battery.


What is the equivalent resistance of this circuit?

A) 72 Ω

B) 18 Ω

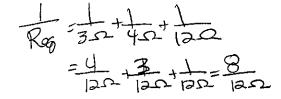
 $(C) 3.0 \Omega$


IT=I,+I2+I3+I4 =3A+ \A+.33A+.67A

187. Two identical resistors connected in series have an equivalent resistance of 4 ohms. The same two resistors, when connected in parallel, have an equivalent resistance of

(A) 1 Ω (B) (B) (A) (B) (A) (B) (A) (B) (A) (A

188. The diagram below represents part of an electric circuit containing three resistors.


What is the equivalent resistance of this part of the circuit?

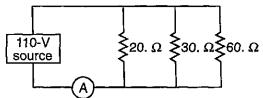
Α) 0.67 Ω

B) 1.5 Ω

C) $6.3~\Omega$

D) 10 0

189. What is the total current in a circuit consisting of six operating 100-watt lamps connected in parallel to a 120-volt source?

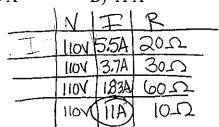

(A) 5 A)

B) 20 A I=.83A

D) 12 000 A

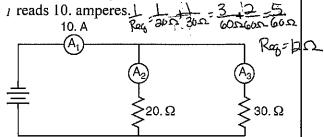
x6=5A

190. In the diagram below of a parallel circuit, ammeter A measures the current supplied by the 110-volt source.


The current measured by ammeter A is

A) 1.0 A

B) 0.10 A

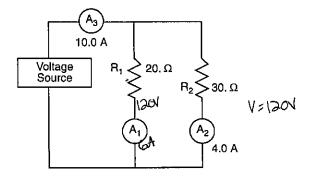

C) 5.5 A

D) 11 A

Ray 302 305 602

191. In the circuit diagram shown below, ammeter A

What is the reading of ammeter A_2 ?


 $(A) 6.0 \overrightarrow{A}$ B) 10. A D) 4.0 A

192. An electric circuit contains an operating heating element and a lit lamp. Which statement best explains why the lamp remains lit when the heating element is removed from the circuit?

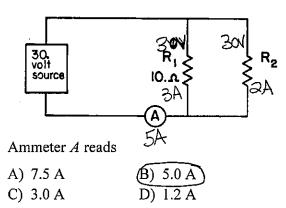
- A) The lamp has less resistance than the heating element.
- B) The lamp has more resistance than the heating element.
- C) The lamp and the heating element were connected in series.
- (D) The lamp and the heating element were connected in parallel.

- 193. As the number of resistors in a parallel circuit is increased, what happens to the equivalent resistance of the circuit and total current in the circuit?
 - A) Both equivalent resistance and total current decrease.
 - B) Both equivalent resistance and total current increase.
 - C) Equivalent resistance decreases and total current increases.
 - D) Equivalent resistance increases and total current decreases.

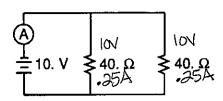
Base your answers to questions 194 and 195 on the diagram below, which shows two resistors and three ammeters connected to a voltage source.

194. What is the current reading of ammeter A_1 ?

- A) 10.0 A
- C) 3.0 A

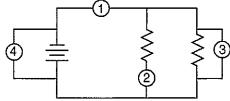

195. What is the potential difference across the source?

- A) 440 V
- B) 220 V
- D) 60. V


407

401 4A 1052 HOM 2A 2052 1401 6A

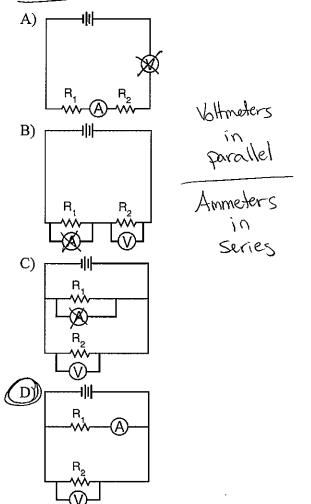
196. Base your answer to the following question on the diagram below which represents two resistances (R_1 and R_2) and an ammeter connected to a constant 30. volt source. The combined resistance of the circuit is 6.0 ohms.


197. In the circuit diagram below, ammeter *A* measures the current supplied by the 10.-volt battery.

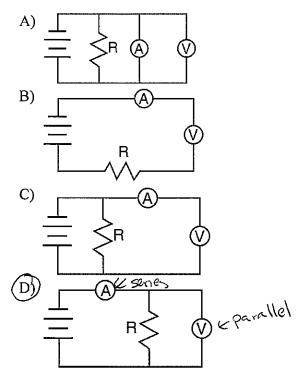
The current measured by ammeter A is

198. A 10-ohm and a 20-ohm resistor are connected in parallel to a constant voltage source. If the current through the 10-ohm resistor is 4 amperes, then the current through the 20-ohm resistor is

199. In the electric circuit diagram below, possible locations of an ammeter and a voltmeter are indicated by circles 1, 2, 3, and 4



Where should an ammeter be located to correctly measure the total current and where should a voltmeter be located to correctly measure the <u>total voltage?</u>


- A) ammeter at 1 and voltmeter at 4
- B) ammeter at 2 and voltmeter at 3
- (C) ammeter at 3 and voltmeter at 4
- D) ammeter at 1 and voltmeter at 2

Voltage is the same everywhere across all branches of a parallel circuit

200. In which circuit represented below are meters properly connected to measure the current through resistor R_1 and the potential difference across R_2 ?

201. Which circuit diagram below correctly shows the connection of ammeter A and voltmeter V to measure the current through and potential difference across resistor R?

- 202. In simple electrical circuits, connecting wires are assumed to have a resistance of
 - A) one ohm
 - B) greater than one ohm
 - C) less than zero ohms
 - (D) zero ohms