TERM	Variable (with Units)	What you need to understand and apply		
INERTIA	m (kg)	Inertia is an object's resistance to change in motion. It is the reason you need a seatbelt (If a car stops quickly and you are not wearing a seatbelt you will continue in motion). For linear motion, inertia is mass.		
MOMENTUM	$p (kg\frac{m}{s})$	p=mv Momentum is a property that takes into account an object's mass (inertia) and velocity. An object with a small mass that goes very fast can have as much impact as a large mass going slow.		
IMPULSE	J (Ns)	$J=(F_{net})t$ Impulse is equal to change in momentum. $J=\Delta p$ A change in momentum (impulse) involves an object speeding up, slowing down or changing direction due to a net force. This is really a rearrangement of Newton's second law. $F_{net} = ma = \frac{m\Delta v}{t} = \frac{\Delta p}{t} \text{ or } (F_{net})t=m\Delta v$ Impulse = change in momentum. The rate of impulse or the		
MASS	m (kg)	Mass is inertia. Mass is also a property which causes gravitational attraction between objects with mass.		
NET FORCE	F_{net} (N) (kg $\frac{m}{s^2}$)	Net force is the overall (unbalanced) force acting on a mass when all force vectors are combined. Net force is the amount that one or more forces win by. For Regents Physics analyze the net force on each object separately. WHATEVER HAPPENS TO F_{net} HAPPENS TO ACCELERATION.		
Acceleration	$\begin{array}{c} \mathbf{a} \\ (\frac{m}{s^2}) \end{array}$	$a = \frac{F_{net}}{m}$ or $a = \frac{\Delta v}{t}$ rearranged $\frac{F_{net}}{m} = \frac{\Delta v}{t}$ or $F_{net}t = m\Delta v$ Acceleration occurs when an object speeds up, slows down or changes direction due to a net force. ACCELERATION AND NET FORCE ALWAYS AGREE IN DIRECTION.		
EQUILIBRIUM	a=0 F _{net} =0	An object in equilibrium experiences two or more forces that are in balance. An object in equilibrium is recognized by any of the following $F_{net}=0$; $a=0$; rest; constant velocity		

Term	Variable	What you need to understand and apply		
WEIGHT	F _a	The force due to the gravitational field is known as weight		
	- g	$\mathbf{F}_{g} = \mathbf{mg}$ or $\mathbf{F}_{g} = G \frac{m_{1}m_{2}}{m_{2}}$ [TOPIC 3B/Skill 6]		
		-For objects on the surface of the Earth weight is always		
		downward.		
		-For two masses attracted at a distance by gravity, weight is		
		always attractive.		
		Weight is the only force for an object in free fall and therefore		
		$\mathbf{F}_{g} = \mathbf{F}_{net}$ for any projectile.		
NORMAL	$\mathbf{F}_{\mathbf{N}}$	The normal force is the force due to the surface that acts		
FORCE	1	perpendicular to an object in response to weight.		
		Normal forces are always directed		
		perpendicular to the surface. -For equilibrium on level surface with no other vertical force		
		-For equilibrium on an incline $F_N - F$		
		-For vertical acceleration (elevators) $F_{\rm M}$ is the apparent weight of		
		the object and $F_{rot} = F_{a} + F_{N}$		
		-If F_{net} and a are positive (acceleration unward) $F_M > F_a$		
		-If F_{net} and a are negative (acceleration downward) $F_N < F_g$		
		-If F_{net} and a are 0 (constant speed or rest) $F_N = F_g$		
APPLIED	F.	The name for any force that comes from one of the many sources		
FORCE	- A	such as person or machine that is not already identified in this list.		
		Saying F _A avoids a lot of awkward Force diagrams		
HORIZONTAL	FAX	The part of an applied force that aligns with the horizontal axis.		
FORCE	1111	$\mathbf{F}_{AX} = \mathbf{F}_{A} \cos \Theta$		
COMPONENT				
FORCE	F _{AY}	The part of an applied force that aligns with the vertical axis $\mathbf{F}_{i} = \mathbf{F}_{i} = \mathbf{F}_{i}$		
Frictional Force	F	The force between an object and the surface Always resists or		
i neuonari i oree	F _f	opposes motion.		
		For objects on a level surface $\mathbf{F}_{net} = \mathbf{F}_{AX} + \mathbf{F}_{f}$		
		which means		
		-for equilibrium $-F_f = F_{AX}$		
		-for acceleration $\mathbf{F}_{\mathbf{f}} = \mathbf{F}_{\mathbf{net}} + \mathbf{F}_{\mathbf{AX}}$		
		Frictional force also depends on the types of surfaces that are		
		interacting and whether the force is required to start an object in		
		motion (static friction) or to keep an object in motion (kinetic		
	<u> </u>	$\frac{\text{triction}}{F_{f}} + \mu F_{N} [\text{TOPIC 3B/Skill 4}]$		
Tension Force	F T	Force due to a rope or wire etc., that supports or lifts and object. A form of \mathbf{E} , with a specific normal		
		A form of r_A with a specific name.		

$\mathbf{F}_{\mathbf{gII}}$	When an object is on an incline the axes are redefined as parallel and perpendicular instead of horizontal and vertical. The weight vector is straight down which is on the vertical axis and weight must be broken into components that align with parallel and		
$F_{g\perp}$	perpendicular known		
0	$\mathbf{F}_{gII} = \mathbf{F}_{g} \mathbf{SIN} \mathbf{\Theta} \mathbf{F}_{g\perp} = \mathbf{F}_{g} \mathbf{COS} \mathbf{\Theta} = \mathbf{F}_{N}$		
	Network For Objects on Inclines		
	(with no friction)		
	$F_{\perp} = F_{norm}$		
	F _{gII} F _{g⊥}		

	LINKING F _{net} EQUATIONS FOR OBJECTS ON A SURFACE						
	Horizontal Axis	Vertical Axis	Inclined Plane				
SCENARIO	Level Surface Vertical axis is in equilibrium	Elevator	Ramp Perpendicular axis is in equilibrium				
Frictionless	$\begin{array}{ccc} F_{net} = ma & F_{net} = F_A \\ So F_{net} = F_A = ma \end{array}$		$F_{net}=F_{gII}=F_{g}\sin\Theta=mg\sin\Theta$				
Equilibrium	$ \begin{array}{l} F_{net} = 0 \qquad F_{net} = F_A + F_f \\ so 0 = F_A + F_f \\ F_A = -F_f \end{array} $	$F_{net}=0 \qquad F_{net}=F_N+F_g$ so $0=F_N+F_g$ $F_g=mg$ So $0=F_N+mg$ [mg is negative] So $F_N=F_g=mg$	$F_{net}=0 \qquad F_{net}=F_{gII}+F_{f}$ So $0=F_{gII}+F_{f}$ So $0=mgsin\Theta + F_{f}$ [mg is negative] So $F_{f}=mgsin\Theta$				
Acceleration With more than one force on axis	$\begin{array}{l} F_{net} = ma F_{net} = F_A + F_f \\ \text{so} ma = F_A + F_f \\ \text{-if acc is positive } F_A > F_f \\ \text{-if acc is negative } F_A < F_f \end{array}$	$F_{net}=ma \qquad F_{net} = F_N+F_g$ so $ma=F_N+F_g$ $F_g=mg$ So $ma=F_N+mg$ [mg is negative] -if acc is positive $F_N>Fg$ -if acc is negative $F_N FN is the apparent weight, Fg does not change regardless of direction of Net Force or acceleration$	$\begin{array}{ll} F_{net} = ma & F_{net} = F_{gII} + F_{f} \\ So \ ma = F_{gII} + F_{f} \\ So \ ma = mgsin\Theta + F_{f} \\ [mg \ is \ negative] \\ \text{-if acc is positive } F_{gII} > F_{f} \\ \text{-if acc is negative } F_{gII} < F_{f} \end{array}$				