Unit 3 Practice Test 2 pt Questions

196.	196. Which of the following has the greatest inertia?							
	 A) A panda bear with a mass of 1.25 x 10² kg B) A koala bear with a mass of 8 kg C) A polar bear with a mass of 5 x 10² kg D) A gummi bear with a mass of 2.5 x 10⁻³ kg 							
197.	The rate of chang	ge of momentum is	known as					
	A) impulse	B) net force	C) inertia	D) velocity				
		Fret-	40					
198.	198. If a hover puck is accelerated down a hallway it must be experiencing a							
	A) balanced for	ee	(B) net for	(B) net force				
	C) constant velo	city	D) zero f	D) zero force				
199. If a 4.2 kg bowling ball hits a 1.4 kg bowling pin with a force of 10N. What is the force at which the bowling pin hits the bowling ball?								
	A) 30 N	B) 3.3 N	C) 4.2 N	D) 10 N				
200. Two dogs apply a force concurrently to a toy. Which angle between the two force vectors will create the greatest resultant?								
			C) 00 daggaes	D) 45 dagger				
(A) 30 degrees B) 180 degrees C) 90 degrees D) 45 degrees Smallest difference							

201. Which graph best represents the motion of an object that has no unbalanced force acting on it?

202. Which statement explains why a book resting on a table is in equilibrium?

- A) There is a net force acting downward on the book.
- B) The weight of the book equals the weight of the table.
- C) The acceleration due to gravity is 9.8 m/s² for both the book and the table.
- D) The weight of the book and the table's upward force on the book are equal in magnitude, but opposite in direction.
- 203. The gravitational force of attraction between two objects would be increased by

- (A) doubling the mass of both objects, only
- B) doubling the distance between the objects, only \checkmark
- C) doubling the mass of both objects and doubling the distance between the objects —
- D) doubling the mass of one object and doubling the distance between the objects

204. Which diagram best represents the gravitational field lines surrounding Earth?

205. Base your answer to the following question on The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth.

Fg = 9

The slope of the graph represents the

- A) gravitational field strength
- C) momentum of objects
- B) universal gravitational constant

206. The diagram below shows a student applying a 10.-newton force to slide a piece of wood at constant speed across a horizontal surface. After the wood is cut in half, one piece is placed on top of the other, as shown.

What is the magnitude of the force, *F*, required to slide the stacked wood at constant speed across the surface?

- A) 40 N
- B) 20 N
- (C) 10 N
- D) 5.0 N

207. Compared to the force needed to start sliding a crate across a rough level floor, the force needed to keep it sliding once it is moving is

- A) less
- B) greater
- C) the same

208. Which of the following is a scalar quantity?

- A) weight
- B) momentum
- C) force
- D) inertia mass

209. What is the weight of a 2.00-kilogram object on the surface of Earth?

- A) 4.91 N
- B) 2.00 N
- C) 9.81 N
- D) 19.6 N

Fg=mg

210. A 750-newton person stands in an elevator that is accelerating downward. The upward force of the elevator floor on the person must be

A) equal to 0 N

B) less than 750 N

C) equal to 750 N

D) greater than 750 N

- 211. An air bag is used to safely decrease the momentum of a driver in a car accident. The air bag reduces the magnitude of the force acting on the driver by
 - A) increasing the length of time the force acts on the driver
 - B) decreasing the distance over which the force acts on the driver
 - C) increasing the rate of acceleration of the driver
 - D) decreasing the mass of the driver
- 212. Base your answer to the following question on the information and diagram below.

The diagram shows a compressed spring between two carts initially at rest on a horizontal frictionless surface. Cart A has a mass of 2 kilograms and cart B has a mass of 1 kilogram. A string holds the carts together.

After the string is cut and the two carts move apart, the magnitude of which quantity is the same for both carts?

- (A) momentum
- B) velocity
- C) inertia
- D) kinetic energy

213. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? Fret lef

A)

C)

D)

214. A force vector was resolved into two perpendicular components, F_1 and F_2 , as shown in the diagram below.

Which vector best represents the original force?

A)

B)

C)

215. A 1.0×10^3 -kilogram car travels at a constant speed of 20. meters per second around a horizontal circular track. Which diagram correctly represents the direction of the car's velocity (v) and the direction of the centripetal force (F_c) acting on the car at one particular moment?

Fito conter V tangent

Q = V

216. Which graph best represents the relationship between the magnitude of the centripetal acceleration and the speed of an object moving in a circle of constant radius?

217. The diagram below represents two satellites of equal mass, *A* and *B*, in circular orbits around a planet.

For GMIMZ TX2 Means Fg

Compared to the magnitude of the gravitational force of attraction between satellite A and the planet, the magnitude of the gravitational force of attraction between satellite B and the planet is

- A) half as great
- C) one-fourth as great

- B) twice as great
- D) four times as great

218. Which graph best represents the motion of an object moving down a frictionless inclined plane?

Distance (V

Time

C) Distance Time

Distance Time

Distance

			Unit 3 Prac	tice Test			
	19. As the angle of incline of a ramp rampA) increasesC) remains the same		B) decre	FN=Fg+	Tg_= Fgcose as e incresses cos de reuses		
220.	A) Ns-	following is an acception B) kg m/s ²	C) Nm	inge in momo D) N/n			
		Pa	7= C=14m=	<u>-</u> +			

Unit 3 Practice Test 3 pt Questions

$)^{221}$	A 200N crate rests on a ramp inclined at an angle of 30 degrees. What is the parallel component of the crate's weight?							
	A) 200N	B) 980N	C) 100N	D) 30N	Fg 11 = Fg sines Fg 11 = 200N sin 30°			
					1311 = 20010 31120			
222.	A 300 kg crate is		Determine the force	e of tension ne	eded to accelerate the			
	A) 2790N	B) 150N First Not Fi	C) 3090N	D) 2940N	ZFy=Fg+F_ ma=mg+F+ 3004(546)=(3004)(9.846)+ 150N=-2940N+F+			
		FT			150N=-299010 ++-			
223.	At a certain loca 70kilogram ast location?	ntion, a gravitationa tronaut. What is the	l force with a magn e magnitude of the g	itude of 350 n ravitational fie	eld strength at this			
	A) 0.20 kg/N	B) 5.0 N/kg	C) 9.8 m/s^2	D) 25 000 N	Vkg = 51			
224.	planet. Marvin n	noves the ship to a		e gravitational	at a distance R from a force is now 500N. What			
(A) 2R	B) 4R	C) R/2	D) R/4	accon r x2			
			Fo-Cay	NIM2	r= Am,ma			
	throws an 8 kilo	ds on his Roller Blagram rock horizont ocity? (neglect frict	ally away from his	vel surface. He body at a spee	e has a mass of 55 kg. He d of 5.5 m/s. What is			
	A) 44 m/s	B) 0.8 m/s	C) 5.5 m/s	D) 10 m/s				
	Proefor	e = paster						
	0	= 10 after = 10,1 + 10 = 1 55 kg/(1,) + 6 kg/	555 m/s)					
)	0=6	20 63/41/ 69						

		A STATE OF THE STA		the state of the s						_
226. A 5 kg mass attached vertically to a spring causes a spring to stretch 0.2 meter. What is the							s the			
		ant of the spring						m=5kg	15=49K)
	A) 25 N/m	(B) 245 N	V/m	C) 9.8 N/m		D) 1 N/m			1 X=.2m	1
								K=3		
227.	The force of	attraction betwe	een a cow	with mass m	c and	a "moon" wi	th ma	ass mm is 90	0N	
	when separat	ed by a distance	e of "r". I	f the distance	were	changed to 3	r, wh	at would be	the new	
		n the cow and the						rx3	means F	9
	A) 300N	B) 81001	N (C) 100N		D) 2700N			C	1
										•
228.	A 0.2 kg mou	ise named Jerry	runs into	o a 4kg cat nai	med T	om. In the co	ollisio	on Tom expe	eriences	
	8. A 0.2 kg mouse named Jerry runs into a 4kg cat named Tom. In the collision Tom experiences a force of 10 N for a time of 0.1 seconds. What is the force experienced by Jerry during the									
	collision?									
	A) 2N	B) 10N)	C) 200N		D) 100N				
\										
)										
229.	A 4.0-kilogra	m object is acco	elerated a	at 3.0 meters p	er sec	ond ² north b	y an	unbalanced:	force.	
	The same unbalanced force acting on a 2.0-kilogram object will accelerate this object toward									
	the north at	D) (0	121	G) 2.0 / 2						
	A) 12 m/s^2	B) 6.0 m/	(S^2)	C) 3.0 m/s^2		D) 1.5 m/s^2		m= grg	arg	
								a=0.18	1 6M/52)	
								FIXET IXI	y Frut Tak)
230.	An 8.0-newto	n wooden blocl	k slides a	cross a horizo	ntal w	vooden floor	at co	nstant veloc	ity.	
		agnitude of the							Ĭ	
	A) 2.4 N	B) 3.4 N		C) 8.0 N		D) 27 N				
	T -Q	N) Fa	-IIF	\						
	TNO	N FA	12 Ya	1)=2.4)					
	J1:3	to=	,5X0							

231. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second² on a rough horizontal surface.

Acceleration = 10. m/s²

Frictional force = F_f

May 10. meters per second² on a rough horizontal surface.

Applied force = 50. N

(4c)(10.4c) = 50. N + F_f

(4c)(10.4c) = 50. N + F_f

(Not drawn to scale)

What is the magnitude of the frictional force Fracting on the object?

- A) 5.0 N
- B) 10. N)
- C) 20. N
- D) 40. N

232. A child pulls a wagon at a constant velocity along a level sidewalk. The child does this by applying a 22-newton force to the wagon handle, which is inclined at 35° to the sidewalk as shown below.

What is the magnitude of the force of friction on the wagon?

- A) 11 N
- B) 13 N
- C) 18 N
- D) 22 N

233. An unbalanced force of 40. newtons keeps a 5.0-kilogram object traveling in a circle of radius 2.0 meters. What is the speed of the object?

- A) 8.0 m/s
- B) 2.0 m/s
- C) 16 m/s
- D) 4.0 m/s

Fc=mv2

40N = (5Kg(200 1)

(12 /16/43

234. The diagram below shows an 8.0-kilogram cart moving to the right at 4.0 meters per second about to make a head-on collision with a 4.0-kilogram cart moving to the left at 6.0 meters per second.

After the collision, the 4.0-kilogram cart moves to the right at 3.0 meters per second. What is the velocity of the 8.0-kilogram cart after the collision?

A) 0.50 m/s left B) 0.50 m/s right C) 5.5 m/s left D) 5.5 m/s right