Name: _____ Introduction to Geometry

Mixed Review – Day 1

1. Which set can *not* represent the lengths of the sides of a triangle?

- (1) $\{8,8,17\}$ (2) $\{4,5,6\}$ (3) $\{5,5,9\}$ (4) $\{7,7,12\}$
- **2.** From $5x^2 6x + 8$, subtract $3x^2 + 2x + 4$.

(1) $2x^2 - 4x + 12$ (2) $-2x^2 - 8x + 4$ (3) $2x^2 - 8x + 4$ (4) $-2x^2 + 4x - 12$

3. Two supplementary angles have measures in ratio 2:1. What is the measure of the larger angle?

(1) 120°	(2) 80°	(3) 60°	(4) 100°
(-)	(=) 00	(-) 00	(., -00

5. Which one of the following equations illustrates the commutative property of addition?

(1) a+b=b+a (2) a(b+c)=ab+ac (3) a+(b+c)=(a+b)+c (4) a+0=a

6. If $\cos x = \frac{2}{5}$, what is the measure of $\angle x$, to the nearest degree? (1) 67° (2) 66° (3) 24° (4) 23°

7. Given: \overline{SO} bisects $\angle NSW$ and \overline{NS} and \overline{WS} Which of the following methods can be used to prove $\Delta SNO \cong \Delta SWO$?

8. Which one of the following sets of numbers could represent the measures of the angles of a triangle?

(1) $\{42^{\circ}, 90^{\circ}, 48^{\circ}\}$ (2) $\{27^{\circ}, 89^{\circ}, 54^{\circ}\}$ (3) $\{78^{\circ}, 81^{\circ}, 26^{\circ}\}$ (4) $\{52^{\circ}, 110^{\circ}, 8^{\circ}\}$

9. What equation could be used to solve the problem below?

If three times a number is increased by 24, the result is four less than seven times the number.

- (1) 3x+24=7x-4 (2) 3x+24=4-7x (3) 27x=7x-4 (4) 3(x+24)=7x-4
- 10. In an isosceles triangle, the measure of a base angle is 55° . Find the number of degrees in the measure of the vertex angle.
 - (1) 55° (2) 70° (3) 110° (4) 50°

1. What is the value of *x* in the equation 4(2x+1) = 27 + 3(2x-5)?

(1)
$$7\frac{1}{2}$$
 (2) 4 (3) 21 (4) 9

- **2.** The lengths of the sides of a triangle are 8, 15, and 17. If the longest side of a similar triangle is 34, what is the length of the *shortest* side?
 - (1) 32 (2) 16 (3) 24 (4) 4
- **3.** Given: $\triangle ABC$, $\triangle EDC$, $\angle 1 \cong \angle 2$, $\overline{BC} \cong \overline{DC}$, and $\overline{AC} \cong \overline{EC}$. Which of the following methods can be used to prove $\triangle ABC \cong \triangle EDC$?

4. Based on the construction below, which statement must be true?

(1)
$$m \angle ABD = \frac{1}{2} m \angle CBD$$

(2) $m \angle ABD = m \angle CBD$
(3) $m \angle ABD = m \angle ABC$
(4) $m \angle CBD = \frac{1}{2} m \angle ABD$

5. Factor: $9x^2 - 49$

(1)
$$(3x+49)(3x-49)$$
 (2) $(3x+49)(3x+49)$ (3) $(3x+7)(3x-7)$ (4) $(3x+7)(3x+7)(3x+7)$

6. Which point is collinear with three other points?

7. In the accompanying diagram, parallel lines *l* and *m* are cut by transversal *t* at a 45° angle. Find the number of degree in angle x.

8. In the accompanying diagram, \triangle ABC is similar to \triangle DEF, AC = 3, CB = 5, and DF = 9. Find FE.

- 9. Solve for y: 6y 4 = 2y + 10
- 10. The perimeter of a regular pentagon is 60. What is the length of one side of the pentagon?

11. In the accompanying diagram, \overline{AC} is extended from C through D, m \angle BCD = 140, and m \angle B = 80. Find m \angle BAC.

12. The hypotenuse of a right triangle is 26 centimeters and one leg is 24 centimeters. Find the number of centimeters in the second leg.

Mixed Review – Day 3

1. What is the area of \triangle ABC as shown in the accompanying diagram?

3. Which expression is equivalent to $x^2 + 7x + 6$?

(1) $(x+6)(x+1)$ (2) $(x+3)(x+1)$	2) (3) $(x+1)(x+7)$	(4) x(x+7)
-----------------------------------	---------------------	------------

- 4. Triangle A'B'C' is the image of \triangle ABC under a given transformation. If \triangle A'B'C' is similar but not congruent to \triangle ABC, the transformation must be a
 - (1) dilation (2) line reflection (3) rotation (4) translation
- 5. Which transformation is shown in the accompanying diagram?

++++++++ edited up to here+++++++

- 6. Solve for x: 5x + 2x 4 = 4x + 5
- 7. In the accompanying diagram, parallel lines $\stackrel{\leftrightarrow}{\text{EF}}$ and $\stackrel{\leftrightarrow}{\text{GH}}$ are cut by transversal 13.

8. In the accompanying diagram of isosceles triangle ABC, $\overline{AB} \cong \overline{BC}$, \overline{AC} is extended 14. ______ to D, and m $\angle A = 42$. Find m $\angle BCD$.

9. Which transformation for Δ RST is shown in the accompanying diagram?

15. _____

12.

(1) line reflection	(2) rotation	(3) translation	(4) dilation
---------------------	--------------	-----------------	--------------

10. twice the			In two supplementary angles, the measure of one angle is 6 more than 16			
	measure of the other. The measures of these two angles is					
	(1) 28° and 62°	(2) 32° and 58°	(3) 58° and 122°	(4) 62° and 118°		

11. What is the y – intercept of the line whose equation is y = 7x + 5? 17. _____

