Name:

Date: _____

Introduction to Geometry

INTRO REVIEW #1

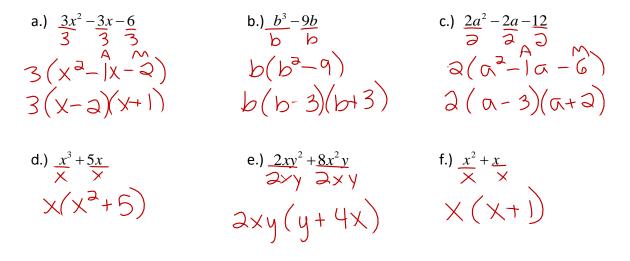
Factoring – there are 3 methods of factoring:

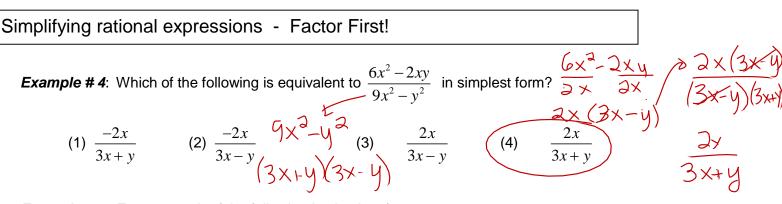
1. <u>GCF</u> – (Greatest Common Factor): the <u>largest</u> amount that can be divided out of all terms of an expression.

Ex: Factor out the GCF: $16x^3y^2 + 12xy^5$ GCF: $4xy^2$ Factored: $4xy^2(4x^2 + 3y^3)$

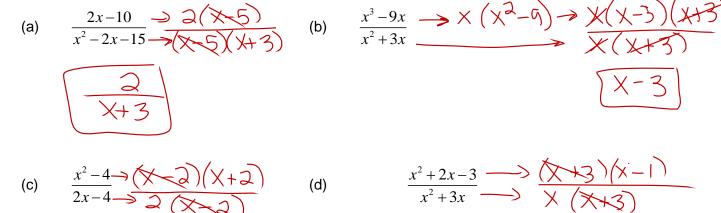
2. Difference of Perfect Squares: Everything must be perfect squares, and must be separated by a subtracting sign.

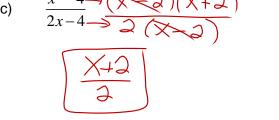
Ex: $25x^2 - 49y^2 = (5x + 7y)(5x - 7y)$

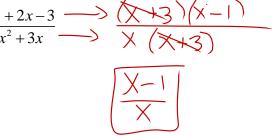

3. <u>Multiply/Add</u>: In a trinomial of the form $ax^2 + bx + c$ ($a \neq 0$), factors have a sum = b, and a product = c


Ex: Factor: $x^2 - 3x - 10$ since $-5 \cdot 2 = -10$ and -5 + 2 = -3, the factors are (x - 5)(x + 2)

Example # 1: Factor the following: $G \subset F$ $D \circ J S$ $A \downarrow M$ a.) $\frac{28a^2 - 14a}{14a}$ $b.) 49x^2 - 81y^2$ c.) $x^2 - 5x - 14$ (7x - 9y)(7x + 9y) (x - 7)(x + 2)


Factoring Completely: Factor out the GCF first, then use method # 2 or # 3 to factor what is left.


Example # 2: Factor each of the following completely:



Example # 5: Express each of the following in simplest form.

MIXED REVIEW

2. What is the length of the hypotenuse of the given right triangle in simplest radical form?

$$8^{2}+4^{2}=C^{3}$$

$$64+16=C^{3}$$

$$80=C^{2}$$

$$16N5=C$$

$$4N5=C$$

$$9^{2}$$

INTRO REVIEW #1

HOMEWORK

1. Factor the following: a.) $6x^2 + 9x$ b.) $x^2 - 5x - 6$

c.)
$$18x^2y^3 + 24x^5y^5$$
 d.) $144 - 25x^2$

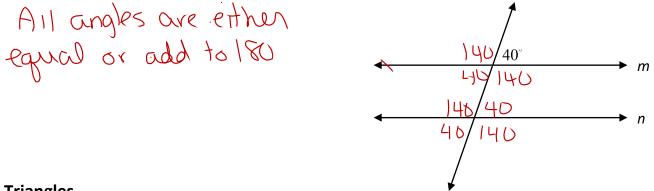
2. Factor the following completely:

a.) $x^3 - 4x^2 - 12x$ b.) $5x^2 - 45x + 90$

c.)
$$8x^3 - 72x^2$$
 d.) $10p^2 + 10p - 20$

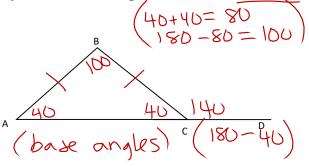
3. Simplify the following rational expressions:

a.)
$$\frac{3x^2 + 3x - 36}{x^2 - 5x + 6}$$
 b.) $\frac{x^2 - 25}{6x - 30}$

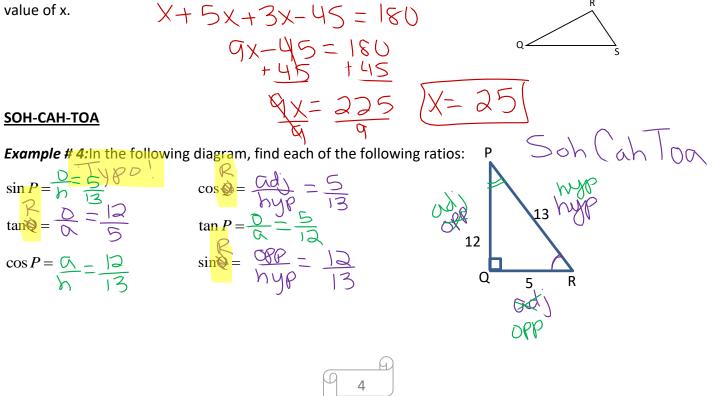

c.)
$$\frac{3x^2 + 15x}{6x^2 - 150}$$
 d.) $\frac{9x^2 - 1}{6x^2 - 2x}$

Ð

INTRO REVIEW # 2

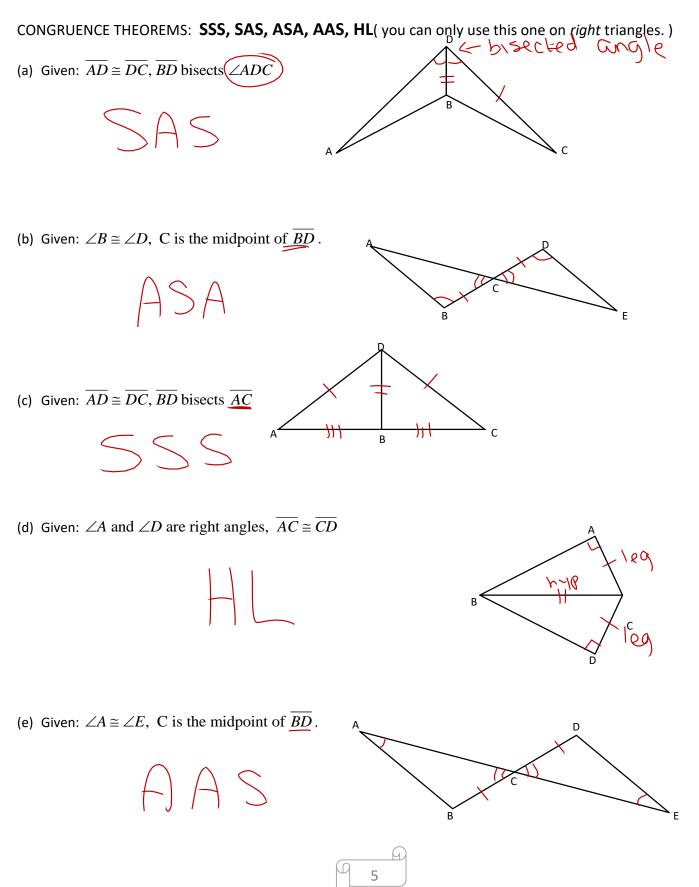

Parallel lines

Example # 1: Given $m \parallel n$, find the measure of the rest of the angles.

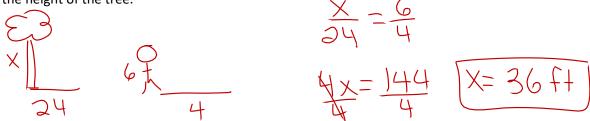


Triangles

Example # 2: In the diagram of $\triangle ABC$, $\overline{AB} \cong \overline{BC}$, and $m \angle A = 40^\circ$. Find $m \angle B$, $m \angle BCA$, and $m \angle BCD$.



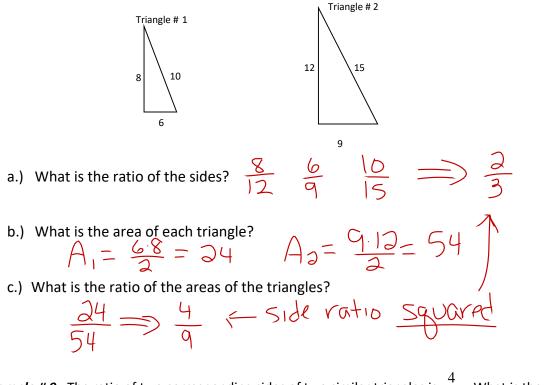
Example # 3: The **degree** measures of the <u>angles</u> of $\triangle QRS$ are represented by x, 5x, and 3x-45. Find the value of x.


Congruent Triangles

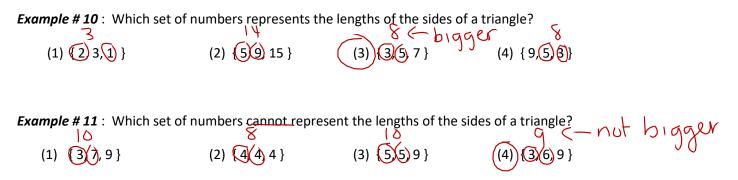
Example # 5: Given the following information, state which triangle congruence theorem can be used to prove the triangles are congruent.

Similar Triangles: If two triangles are similar to one another, their sides are in proportion to one another.

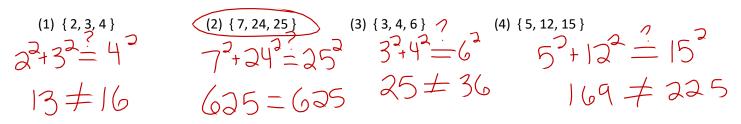
Example # 6: At the same time that a tree casts a shadow 24 feet long, a man that is 6 feet tall casts a shadow 4 feet long. Find the height of the tree.



Example #7: The measures of the sides of a triangle are 4, 7, and 10 nches long. If the longest side of a similar triangle **(25)** inches, find the length of the shortest side of that triangle.

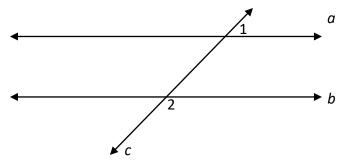

<u>Similar Triangles and their Areas</u>: If two triangles are *similar*, then the ratio of their areas equals the <u>square</u> of the lengths of any two corresponding sides.

Example # 8: Given the two following similar triangles, answer the following questions.

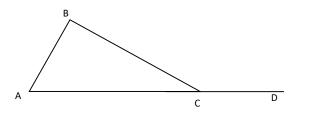

Example # 9: The ratio of two corresponding sides of two similar triangles is $\frac{4}{9}$. What is the ratio of their areas?

<u>Lengths of the Sides of a Triangle</u> – The sum of any two sides of a triangle must be *greater* than the length of the third side.

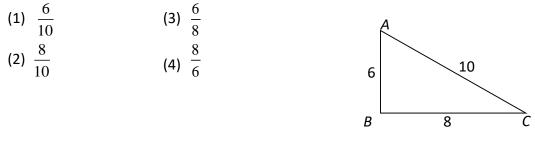
Note: Do not confuse triangle side questions with *right* triangle questions.


Example # 12: Which of the following represent the sides of a right triangle?

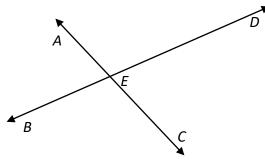
(4)

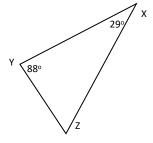

4

- 1. If the lengths of the legs of a right triangle are 2 and 3, then the length of its hypotenuse is:
 - (1) $\sqrt{13}$ (2) $\sqrt{5}$ (3) 5
- 2. In the diagram below, lines *a* and *b* are cut by transversal *c*.

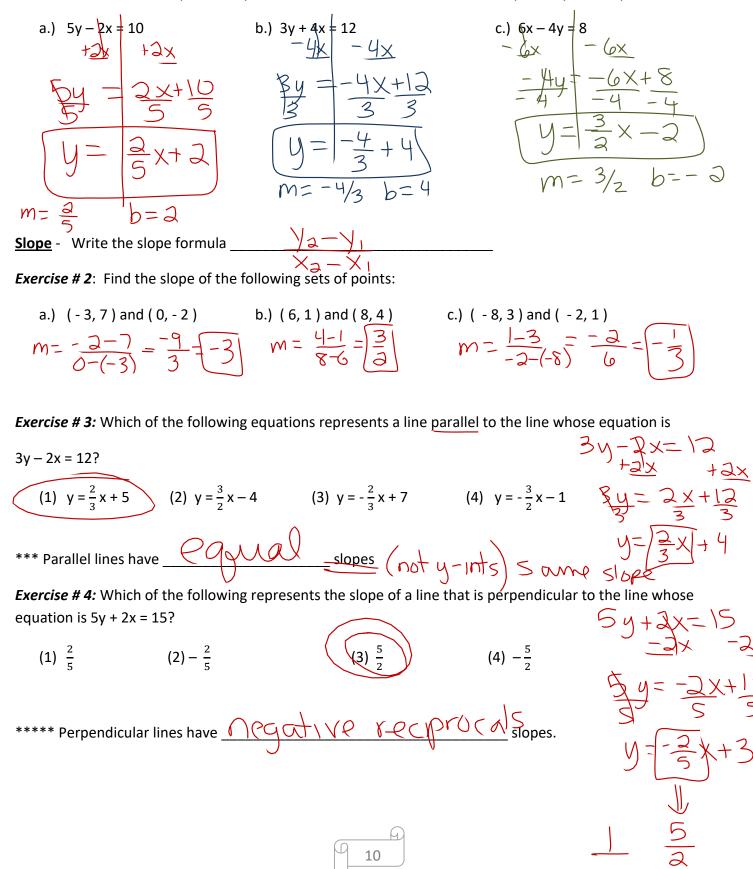


If the measure of $\angle 1 = 41^{\circ}$, what is the measure of $\angle 2$?


- (1) 41° (2) 139° (3) 49° (4) 128°
- 3. Which set of numbers represents the lengths of the sides of a triangle?
 (1) { 4, 9, 13 }
 (2) { 5, 7, 11 }
 (3) { 3, 4, 6 }
 (4) { 1, 2, 3 }
- 4. Simplify: $\frac{6x^2 2xy}{9x^2 y^2}$
- 5. In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point D. If $\angle BCD = 112^\circ$, $\angle BAC = 3x + 21$, and $\angle ABC = 2x + 31$, find the value for *x*.

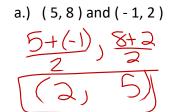

6. In the following diagram, which of the following represents $\cos C$?

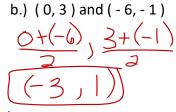
- 7. Given the ratios of the sides of two similar triangles, find the ratios of the areas.
 - a.) $\frac{5}{6}$ b.) $\frac{10}{3}$ c.) $\frac{1}{8}$ d.) 12:13
- 8. In the figure shown, lines \overrightarrow{AC} and \overrightarrow{BD} intersect at *E*, and the $m \angle AED = 116^{\circ}$. What is the measure of $\angle AEB, \angle BEC$, and $\angle CED$?

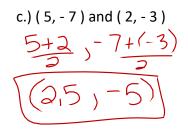

9. Given ΔXYZ , which side is *shortest*? Justify your answer. (*picture is not drawn to scale*)

INTRO Review #3

<u>Graphing a line</u> You must get the equation in y = mx + b form.

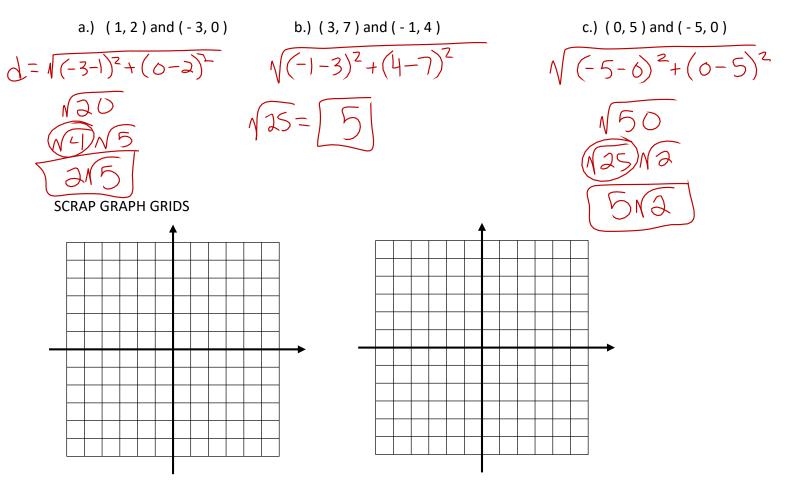

Exercise #1: Put each equation in y = mx + b form. Then state the line's slope and y-intercept.



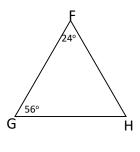

 $\frac{1+X_2}{2}$, $\frac{1+1/2}{2}$

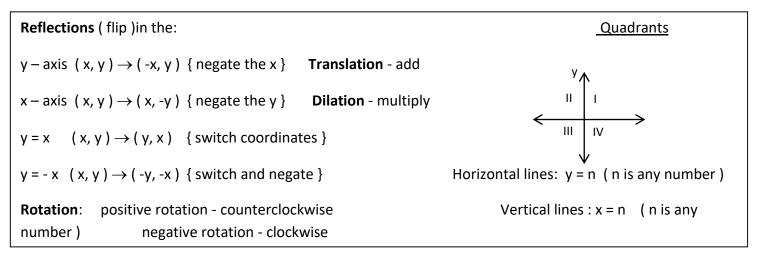
Midpoint – Write the midpoint formula

Exercise # 5: Find the midpoint of each of the following sets of points.

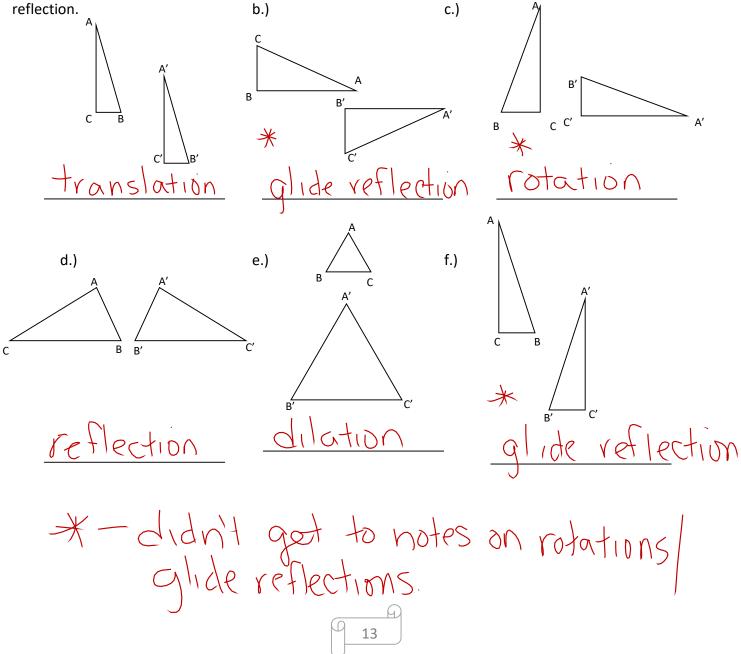


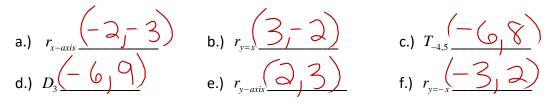
Distance - Write the distance formula

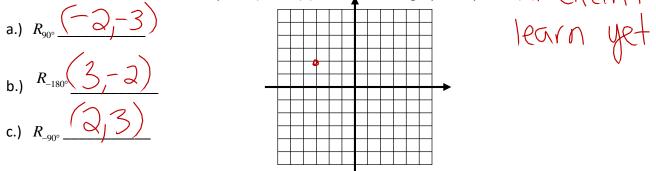

Exercise # 6: Find the distance between each pair of points. Express your answers in *simplest radical form*, where applicable.


INTRO Review # 3 Homework

- 1. Find the Distance, midpoint, and slope between the following sets of points. Leave your answers in *simplest radical form,* where appropriate.
 - a.) (2,5) and (-3,1) b.) (0,3) and (-1,-4)


- 2. Which of the following is the equation of a line parallel to the line whose equation is 2y - 3x = 6?
 - (1) 3y + 2x = 9 (2) 3y 2x = 4 (3) $y = \frac{3}{2}x + 5$ (4) $y = -\frac{3}{2}x + 7$
- 3. Which of the following is the slope of a line perpendicular to the line whose equation is 7y + 5x = 14?
 - (2) $-\frac{5}{7}$ (3) $\frac{7}{5}$ (4) $-\frac{7}{5}$ $(1) \frac{5}{7}$
- $\frac{2x^2+4x-30}{6x-18}$ 4. Simplify the rational expression
- 5. Which set of numbers represents the side of a triangle?
 - $(1) \{4, 8, 12\} (2) \{3, 3, 5\} (3) \{5, 5, 10\} (4) \{5, 6, 12\}$
- 6. In a triangle, the angles measure 5x, 3x, and x 27. Find the value of x.
- 7. In triangle FGH, which side is the longest? Justify your answer. (Picture is not drawn to scale)


INTRO REVIEW #4

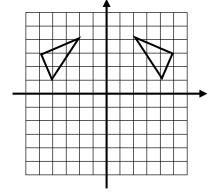

Exercise # 1: Categorize each transformation as either a reflection, translation, rotation, dilation or glide

Exercise # 2: Write the image of point (-2, 3) under the following transformations:

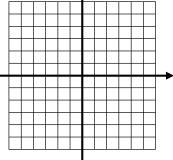
Exercise # 3: Find each rotation for the point (-3, 2) (the use of the graph is optional) \star

**Glide Reflection – When applying a glide reflection, you must do the transformation closest to the point
first. (Work backwards!)

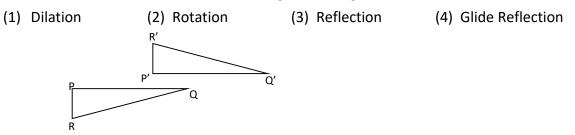
* didn't learn yet


14

****Exercise # 4**: Give the coordinates of the image of (-2, 3) under each of the following glide reflections:


(a)
$$r_{y-axis} \circ T_{0,-5}$$
 (b) $T_{-6,0} \circ r_{x-axis}$ (c) $T_{3,3} \circ r_{y=x}$ (d) $r_{y=-x} \circ T_{4,-4}$
($= 2,3$) $\xrightarrow{10}(=2,-3)$ ($= 2,3$) $\xrightarrow{10}(=2,-3)$ ($= 2,3$) $\xrightarrow{10}(=2,-1)$
($= 2,3$) $\xrightarrow{10}(=2,-3)$ ($= 2,3$) $\xrightarrow{10}(=2,-1)$
($= 2,-3$) $\xrightarrow{10}(=2,-3)$ ($= 2,-3$) ($= 2,-3$) ($= 2,-3$) $\xrightarrow{10}(=2,-3)$ ($= 2,-3$) $\xrightarrow{10}(=2,-3)$ ($= 2,-3$) ($= 2,$

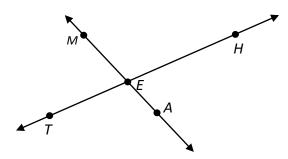
INTRO REVIEW # 4 HOMEWORK


- 1. Which expression best describes the transformation shown in the following diagram?
 - (1) Line Reflection (3) Rotation
 - (2) Point Reflection (4) Translation

** 2. What is the image of point A(-3, 2) after the composition of transformations defined by $T_{-3,-3} \circ r_{y=x}$? (the use of the grid is optional)

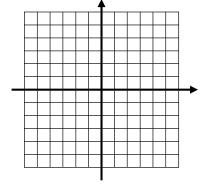
** 3. Which transformation is used to map ΔPQR to $\Delta P'Q'R'$?

4. Simplify: $\frac{3x^2 - 15x - 42}{x^2 - 49}$

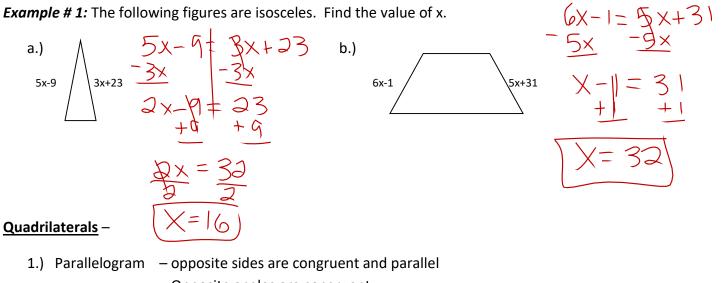

5. Given points A(-2, 6) and B(-1, -3), find the distance, midpoint and slope of segment \overline{AB} . Leave your answers in *simplest radical form* where appropriate.

Distance:

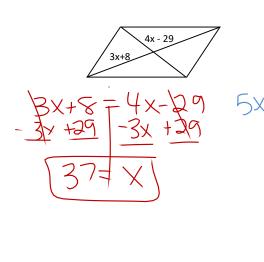
Midpoint:

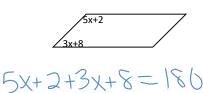

Slope:

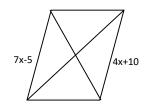
6. In the figure shown, lines \overrightarrow{MA} and \overrightarrow{TH} intersect at *E*, and the $m \angle AEH = 68^{\circ}$. What is the measure of $\angle AET$?

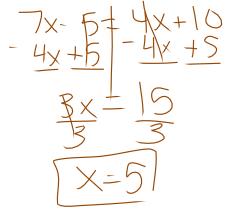

- 7. Find each of the following transformations for the point (-7, 11).
 - a.) r_{x-axis} b.) $r_{y=x}$ c.) $T_{5,-1}$

 d.) D_2 e.) r_{y-axis} f.) $r_{y=-x}$
- 8. Find each rotation for the point (4, 3) (the use of the graph is optional)
 - a.) *R*_{90°}_____
 - b.) *R*_{-180°}_____
 - c.) *R*_{_90°}_____

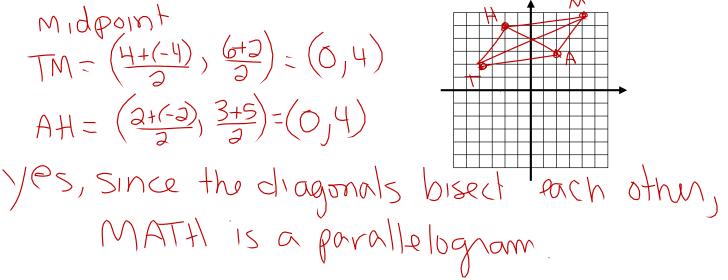

INTRO Review # 5

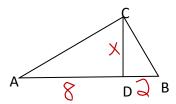

Isosceles – A figure is considered isosceles if at least two sides are equal in length.


- Opposite angles are congruent
- Consecutive angles are supplementary
- Diagonals bisect each other
- 2.) Rhombus all the properties of parallelogram AND
 - All four sides are congruent
 - Diagonals are perpendicular
- 3.) Rectangle all of the properties of parallelograms AND
 - All angles are right angles
 - Diagonals are congruent
- 4.) Square all of the properties of all quadrilaterals above.

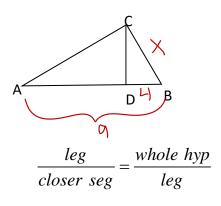

Example # 2: Given that the following figures are parallelograms, find the value of x.

8×+10 = 180 17

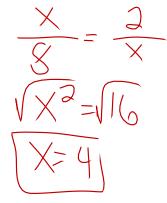



Coordinate Geometry Quadrilaterals

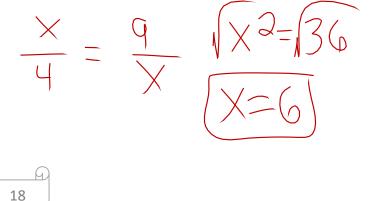
Example # 3: The coordinates of the vertices of Quadrilateral MATH are M(4,6), A(2,3), T(-4,2), and


a.) Is MATH a parallelogram? SHOW how you came to your conclusion. Use appropriate formulas.

<u>Triangles with Altitudes</u> – if an altitude cuts the hypotenuse of a right triangle, the following proportions can be determined.



 $\frac{alt}{seg.1} = \frac{seg.2}{alt}$



Example # 4:

a.) If AD = 8 and DB = 2, find CD.

b.) If DB = 4 and AB = 9, find CB.

Interior and Exterior angles of polygons:

The sum of the *interior* angles of any polygon can be found by using the formula: (n-2)180, where n is the number of sides the polygon has.

Example # 1: What is the sum of the measures of the interior angles of a octagon?

$$(8-2) | 80 = 1080$$
Example # 2: What is the measure of one angle of a hexagon?

$$(6-2) | 80 = 720 = 120$$

The sum of the *exterior* angles of any polygon is always equal to 360.

Example # 3: What is the sum of the measures of the exterior angles of an 11 sided figure?

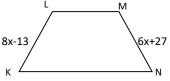
Example # 4: What is the measure of <u>one</u> angle of a regular hexagon?

$$\frac{360}{6} = 60$$

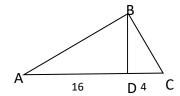
INTRO Review # 5 Homework

1. Given points A(3, - 5) and B(2, 7), find the distance, midpoint and slope of segment \overline{AB} . Leave your answers in *simplest radical form* where appropriate.

Distance:

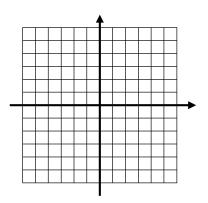

Midpoint:

Slope:


2. Which of the following is the slope of a line perpendicular to the line whose equation is 5x+4y=12?

(1) $\frac{4}{5}$ (2) $\frac{5}{4}$ (3) $-\frac{4}{5}$ (4) $-\frac{5}{4}$

3. Isosceles trapezoid LMNK is shown below with algebraic expressions for the lengths of its sides. Find the value of x.


4. In the diagram below of right triangle ABC, altitude \overline{BD} is drawn to hypotenuse \overline{AC}

If $\overline{AD} = 16$ and $\overline{CD} = 4$, what is the length of \overline{BD} ?

5. The coordinates of the vertices of Quadrilateral SPAM are S(1, 2), P(3, 3,), A(1, -4), and

M(-1,-5). Is SPAM a parallelogram? SHOW how you came to your conclusion. Use appropriate formulas.

- 6. What is the sum of the angles of an 18 sided figure?
- 7. What is the measure of one angle of an octagon?
- 8. What is the sum of the exterior angles of a 7 sided figure?
- 9. What is the measure of one exterior angle of a 12 sided figure?